
Submitted to:
SOS 2007

c©M. Pagani
This work is licensed under the
Creative Commons Attribution License.

A Bird’s Eye View on the Quantitative Semantics of Linear
Logic

Michele Pagani
Laboratoire d’Informatique de Paris Nord

Institut Galilèe – Universitè de Paris 13
Villetaneuse, France

michele.pagani@lipn.univ-paris13.fr

Since the inception of Linear Logic [6], there has been an increasing interest in applying linear
algebra to the formal methods approach to computation. Data types are interpreted as vector spaces, the
addition expressing a kind of superposition of atomic states and the scalars a quantitative estimation of
such a superposition. Programs using their inputs exactly once correspond then to linear functions, while
typical programs, using their inputs several (or none) times are represented by power series.

These are the original intuitions of Girard’s quantitative semantics, and date back to [7]. Depending
on the field of scalars, these semantics can model quantitative behaviors of programs, such as runtime
estimations or resource analysis. Moreover, vectors are able to model overlapping of “inconsistent” in-
formation, a feature which becomes crucial when one wants to interpret non-deterministic computations
or quantum data types. Indeed, recently we succeeded in developing very solid and precise models of
probabilistic and quantum functional languages [2, 5, 11], filling rather big gaps in the literature.

The goal of this presentation is to gently introduce some of the main ideas and most recent results in
quantitative semantics.

1 Programs as power series

Take a functional program M of type 1→ 1, where 1 is the unit type whose only value is skip. The
basic idea of quantitative semantics is to interpret M as a power series (centered at 0):

JMK =
∞

∑
n=0

pnxn .

The unknown x corresponds to the input of M and the exponent n refers to the number of times M will
call x in order to give an output. The whole series gathers all the possible number of calls for x. The
coefficient pn is the part specific to the program M, giving a weight to the possibility that M actually
uses the input n times. Indeed, if M is a deterministic program (e.g. a regular λ -term), then pn will be
zero everywhere except for at most one monomial. The degree of this monomial tells us how many times
M needs to use the input value skip in order to give the output skip. However, this simple situation
changes as we move to more complex data types or languages.

The series has only one unknown because the input type has dimension one. The dimension of a
ground type is the number of its values. Take then the boolean type Bool with two values tt and ff, and
consider now M of type Bool→ 1. Its denotation is a power series with two unknowns:

JMK =
∞

∑
n=0

∞

∑
h=0

pn,hxn
ttxh

ff ,

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Quantitative semantics

where a single monomial xn
ttxh

ff expresses the computations calling the input n + h times, this input
behaving n times as tt and h times as ff. Such semantics have a built-in form of non-determinism,
allowing for a non-uniform behavior of the various calls for the input.

Finite multisets give a convenient notation for multivariable series:

JMK = ∑
m∈Mf({tt,ff})

pmxm(tt)
tt xm(ff)

ff = ∑
m∈Mf({tt,ff})

pmxm ,

where Mf ({tt,ff}) is the set of the finite multisets over {tt,ff}, and m(tt), m(ff) denote the number
of occurrences in m of, respectively, tt and ff. Also, the x in the last series is a variable of dimension
two, representing the two original unknowns xtt and xff.

If we consider output types with more than one possible value, then the denotation describes a family
of power series and not a sole one. If M has type Bool→ Bool, we have two multivariable power series:

JMKtt = ∑
m∈Mf({tt,ff})

pm,ttxm, and JMKff = ∑
m∈Mf({tt,ff})

pm,ffxm,

with two different families of coefficients. Indeed, once fixed input and output types, the only infor-
mation needed to express such power series are the monomial coefficients. Hence, the denotation can
be presented as a matrix, whose lines are indexed by finite multisets (describing monomials), whose
columns are indexed by the possible output values (describing a specific series) and whose entries are
the coefficients:

JMK =

tt
↓

ff
↓

[]→

[tt]→

[ff]→

[tt,ff]→
...

p q

p′ q′

p′′ q′′

p′′′ q′′′
...

...

(1)

For example, the coefficient JMK[tt,tt,ff],ff is the coefficient of the monomial x2
ttxff in the series de-

scribing the computations of M returning ff.
Linear logic proofs are represented by linear functions (i.e. families of power series of degree one).

This is the ideal setting to enlighten one among the most astonishing features of linear logic: the corre-
spondence between the cut-elimination behavior of logical rules and the standard constructions of linear
algebra, alluded by the linear logic jargon (tensor ⊗, direct sum ⊕, dual space, etc. . .). For example, the
splitting of the classical sequent rules into multiplicatives and additives can be motivated with respect to
two different behaviors under cut-elimination: branching and inter-communication. In the quantitative
models, this splitting corresponds to two different ways of aggregating linear functions: direct products
and tensors, both defined by universal properties.

There are in the literature a multitude of quantitative semantics. I list here some choices which must
be taken in order to implement a concrete model. The list is not at all exhaustive, but I hope that it will
give an idea of the different features of these models.

Scalars. In Girard’s normal functors model [7], scalars are possibly infinite sets. Ehrhard’s Köthe
sequences spaces [3] and finiteness spaces [4] recast Girard’s intuitions on actual vector spaces, taking
scalars from standard fields: Köthe sequences spaces consider the field of real numbers R as well as that

M. Pagani 3

of complex numbers C, whilst the finiteness spaces construction work over any field. In the weighted
relational models [9], scalars can be taken from any continuous commutative semi-ring. In the model
developed by Selinger, Valiron and myself [11] the coefficients are completely positive maps of finite
dimension.

Convergence. To choose scalars we must also consider a notion of convergence of a series of scalars.
This is a crucial issue of the model, necessary to compose power series (hence to have a category) and to
see them as well-defined functions from inputs to outputs. A shortcut is by postulating that every series
converges everywhere. This can be done by endowing scalars with a complete order, having the bottom
element 0 (the neutral element of the sum) and the top element ∞ (which is absorbing with respect to the
sum), and then postulating that the “morally” diverging series will value ∞. This choice is taken in the
models in [9] and [11]. The price (not so high) to pay is that scalars must be always non-negative and so
data types are modules rather than vector spaces.

Ehrhard’s models [3] and [4] adopt less obvious topologies (in particular, Köthe sequences spaces
use the standard topology of real and complex numbers), allowing for divergent series, but restricting the
hom-sets to continuous power series, which always compose and converge absolutely in the vector space
associated with the input type. The other side of the coin is that this restriction makes the hom-sets not
cpo-enriched, hence failing to model fix-point combinators and the untyped λ -calculus.

Powers. Girard’s translation of the functional type of programs A→ B into the linear logic formula
!A (B is the bridge between linear functions and power series. In particular, the promotion !A is the
operation lifting a vector x of type A into the space !A of “powers” of type A. The question is: what is a
“power” of x? Here is another point where quantitative models may differ considerably.

In [9] and [11], the exponential !A is defined as the infinite bi-product of the symmetric n-fold tensor
powers of A, following the formula:

!A =
∞⊕

n=0

An, (2)

the intuition being that the n-th layer An of such a bi-product contains the monomials of degree n. The
fact that we are considering symmetric tensors amounts to say that the order in which unknowns appear
is irrelevant.

Equation (2) does not work in Ehrhard’s models, namely infinite products and infinite co-products are
different in finiteness and Köthe sequence spaces. However, Melliès et al. showed that the exponentials
of finiteness spaces can be obtained via a slightly different formula [10, 16]. In all models mentioned so
far, the exponential comonoid is the free commutative comonoid, however the freeness is not necessary
to model linear logic exponentials. For sure, we are ignoring many other notions of exponentials in these
semantics, which might have an interest for modeling operational properties. Blute et al. proposed to
consider, for example, the exponentials generated by the antisymmetric tensor [1].

2 Two examples of applications

Probabilistic computing. Probabilistic coherence spaces [8, 2] yield a quite intuitive example of quan-
titative semantics. Scalars are non-negative real numbers, hence vectors can express probabilistic dis-
tributions of data. Indeed, in collaboration with Ehrhard and Tasson, we proved that this semantics is

4 Quantitative semantics

fully abstract with respect to the contextual equivalence of call-by-name PCF extended with a random
primitive [5].

The proof uses innovative tools which might be useful to study probabilistic programming from a
semantical viewpoint. In a language with random functions, two programs should be considered different
not only when they give different results, but also when they give the same result but with different
probabilities. Showing this difference can be much harder than in a deterministic language. Indeed, it
requires a sharp control over coefficients expressing probabilities. Probabilistic coherence spaces denote
programs with power series, this allows us to use standard tools of Calculus for handling probabilities.

Quantum computing. An important problem in the semantics of quantum languages is how to com-
bine quantum computing with higher-order functions, or in other words, how to design a functional
quantum programming language. A syntactic answer to this question was arguably given with the design
of the quantum λ -calculus [17, 14]. This language has a well-defined syntax and operational semantics.
However, the question of how to give a denotational semantics to the language turned out to be difficult,
and has remained open for many years [13, 15]. One reason that designing such a semantics is difficult
is that quantum computation is inherently defined on finite dimensional Hilbert spaces, whereas the se-
mantics of higher-order functional programming languages, including such features as infinite data types
and recursion, is inherently infinitary.

In a joint project with Selinger and Valiron, we give a quantitative semantics of a higher-order quan-
tum language with full recursion and an infinite data type [11].

The starting point is Selinger’s category CPM of completely positive maps [12]. This category is
suitable for implementing first-order quantum languages, but it has no higher-order duplication and, con-
sequently, cannot model higher-order languages. Basically, we extend CPM in order to make meaning-
ful Equation (2), allowing for linear logic exponentials. The result is a model interpreting a higher-order
quantum program as an infinite dimensional block matrix whose blocks are finite dimensional completely
positive maps.

This explains and illustrates the distinction between the quantum and classical parts of the language.
The quantum part is described by completely positive maps (finite dimension), whereas the classical
control is given by the structure of Lafont category (i.e., linear logic). The model demonstrates that
the two “universes” work well together, but also, surprisingly, that they do not mix too much, even at
higher-order types (we always have an infinite matrix of finite dimensional CPMs). The control flow is
completely handled by the biproduct completion, and not by the CPM structure.

Our main result is the adequacy of the model with respect to the operational semantics.

References

[1] R. F. Blute, Prakash Panangaden & R. A. G. Seely (1994): Fock Space: A Model of Linear Exponential Types.

[2] Vincent Danos & Thomas Ehrhard (2011): Probabilistic coherence spaces as a model of higher-order prob-
abilistic computation. Inf. Comput. 209(6), pp. 966–991.

[3] Thomas Ehrhard (2002): On Köthe sequence spaces and linear logic. Math. Struct. Comput. Sci. 12, pp.
579–623.

[4] Thomas Ehrhard (2005): Finiteness spaces. Math. Struct. Comput. Sci. 15(4), pp. 615–646.

[5] Thomas Ehrhard, Michele Pagani & Christine Tasson (2014): Probabilistic Coherence Spaces are Fully
Abstract for Probabilistic PCF. In P. Sewell, editor: The 41th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL14, San Diego, USA, ACM.

M. Pagani 5

[6] Jean-Yves Girard (1987): Linear logic. Theor. Comput. Sci. 50, pp. 1–102.
[7] Jean-Yves Girard (1988): Normal functors, power series and lambda-calculus. Ann. Pure Appl. Logic 37(2),

pp. 129–177.
[8] Jean-Yves Girard (2004): Between Logic and Quantic: a Tract. In Thomas Ehrhard, Jean-Yves Girard, Paul

Ruet & Philip Scott, editors: Linear Logic in Computer Science, London Math. Soc. Lect. Notes Ser. 316,
CUP.

[9] J. Laird, G. Manzonetto, G. McCusker & M. Pagani (2013): Weighted relational models of typed lambda-
calculi. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2013), 25-28 June
2013, New Orleans, USA, Proceedings, pp. 301–310.

[10] Paul-André Melliès, Nicolas Tabareau & Christine Tasson (2009): An Explicit Formula for the Free Expo-
nential Modality of Linear Logic. In: Automata, Languages and Programming, LNCS 5556, Springer, pp.
247–260.

[11] Michele Pagani, Peter Selinger & Benoit Valiron (2014): Applying Quantitative Semantics to Higher-Order
Quantum Computing. In P. Sewell, editor: The 41th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL14, San Diego, USA, ACM.

[12] Peter Selinger (2004): Towards a quantum programming language. Mathematical Structures in Computer
Science 14(4), pp. 527–586.

[13] Peter Selinger (2004): Towards a semantics for higher-order quantum computation. In: QPL’04, TUCS
General Publication No 33, pp. 127–143.

[14] Peter Selinger & Benoit Valiron (2006): A Lambda Calculus for Quantum Computation with Classical Con-
trol. Math. Struct. Comput. Sci. 16(3), pp. 527–552.

[15] Peter Selinger & Benoı̂t Valiron (2009): Quantum Lambda Calculus. In Simon Gay & Ian Mackie, editors:
Semantic Techniques in Quantum Computation, chapter 9, Cambridge University Press, pp. 135–172.

[16] Christine Tasson (2009): Sèmantiques et syntaxes vectorielles de la logique linèaire. Ph.D. thesis, Université
Paris 7.

[17] Benoı̂t Valiron (2008): Semantics for a higher-order functional programming language for quantum compu-
tation. Ph.D. thesis, University of Ottawa.

	Programs as power series
	Two examples of applications

