
Submitted to:
QAPL 2014

c© T. Kloda, B. d’Ausbourg & L. Santinelli
This work is licensed under the
Creative Commons Attribution License.

Towards a More Flexible Timing Definition Language

Tomasz Kloda Bruno d’Ausbourg Luca Santinelli
ONERA

Toulouse, France
name.surname@onera.fr

Time-triggered languages permit to model real-time system temporal behavior by assigning system
activities to the particular time instants. At these precise instants system observes the controlled
object and, depending on the analysis of its state, invokes the appropriate actions. This fine-grained
control of system temporal evolution enables value and time deterministic programming. Up-to-
date time-triggered frameworks allow to model multi-modal and multi-modular real-time systems.
However, their timing verification imposes some constraints on the computational task model and
system reactivity. By adapting scheduling analysis techniques based on the processor demand instead
of processor utilization factor, these limitations can be overcome and a more flexible framework may
be proposed.

1 Introduction

The development of embedded software is a highly platform dependent process. The main difficulty lies
in both formulating the functional specification of the system and correctly determining its temporal be-
havior. While the former is facilitated by high level programming languages which abstract from many
hardware aspects, getting the expected temporal characteristic of the system involves usually much more
efforts due to the implementation of scheduling policies, synchronization and inter-processes communi-
cation protocols.

To answer the problem of managing efficiently these two crucial for the correctness of the system
aspects, time-triggered languages were devised. These languages clearly separate the functional part
of applications from their timing definition. Applications are specified through two descriptions: their
time definition, expressed in a time-triggered language, and the functional code of tasks, expressed in
any programming language (e.g. C). Functional code does not attempt to control time as the role of
specifying this system’s property is shifted completely towards time definition part which defines exact
points in time at which communication and processing activities are initiated. The state of the system and
its operational modes, can change only at these well-defined beforehand instants. A dedicated compiler
generates, based on both descriptions, an execution control code that will have to be interpreted by a
time-triggered execution system built on top of a selected target platform.

Clearly separating timing definition and functionality specification makes the application develop-
ment process less platform oriented and allows designers to focus more on the abstract system control
aspects than on the concrete execution mechanisms such as task scheduling or time management. The
programming of these mechanisms is devoted to the compiler.

Logical Execution Time Time-triggered languages provide the designer with the powerful program-
ming abstraction of Logical Execution Time (LET) [6, 7]. The application designer assigns a LET
to each task. The LET semantics fixes a time interval as an abstract and logical view of the task
execution. The task is considered to start logically at the start instant of the LET interval. Its in-
put data are read exactly at this start time. The task is considered to complete logically at the end

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Towards a More Flexible Timing Definition Language

instant of the LET interval. Its output data (the results of its computation) are produced exactly at
this end instant even if the computation was physically terminated before. Such assumption leads

Logical

Physical time

LET

output write
stopresumestart

input read

 release termination

suspend

Figure 1: Logical Execution Time.

to a well-defined and deterministic interaction be-
tween different parallel activities: it is always
known at which time a value will be produced and
then which value is in use at a given time. There-
fore the observable behavior of the system is ex-
actly the logical one and is independent from its
physical execution as depicted on Figure 1.

Timing Definition Languages The concept of LET was introduced for the first time within the Giotto [1,
6] programming language. Giotto assigns a LET to each task that executes some piece of code. Sub-
sequent task invocations are separated by a period that is equal to its LET. Different tasks communicate
between them as well as with sensors and actuators, which exchange data with environment, by means
of ports only. Reading of input ports and sensors take place exactly at the beginning of task LET interval
while writing to output ports and actuators at its end. Several concurrent tasks may be grouped into a
mode that is invoked when the environment or system is in some specific state that should by handled by
this particular mode. Giotto program can be only in one mode at a time. Tasks are invoked within the
mode, which is characterized by some period, at the declared frequencies and can be removed or added
when switching from one mode to another. Giotto was further extended by xGiotto [4] where tasks can
be released also at the occurrence of the external events. Timing Definition Language (TDL) [3, 10, 12],
another successor of Giotto, introduces decomposition of large systems into executing concurrently mod-
ules (components). Each module runs in one mode at a time and can switch to another independently
from other modules. Hierarchical Timing Language (HTL) [5] makes use of abstract tasks. These ab-
stract tasks may be refined by groups of concrete tasks and each refining group of concrete tasks must
behave in full accordance with the timing constraints of the abstract task it refines.

2 An Extended Timing Definition Language

Each of the above cited frameworks can be used successfully and introduces new features for the con-
cepts laid down in Giotto. But all of them rely on the same task model structure. In this paper, we
propose a new time-triggered framework, named Extended Timing Definition Language (E-TDL), that
tries to enhance the basic task model used in TDL while keeping compositional and multi-modal struc-
ture brought by this language. Furthermore, introducing such a new task model permits to devise also
new mode switching mechanisms.

The E-TDL Task Model Classically, a time-triggered task τi = (Ci,LETi) is defined by its worst case
execution time Ci and the Logical Execution Time LETi that is equal to its period Ti (Ti ≡ LETi). The
input ports of τi are read at the beginning of LETi interval, τi executes for at most Ci time within LETi and
its computation results are written on the output ports exactly at the end instant of LETi. A new instance
of τi is then released immediately to repeat this cycle. In this model, task periods and LETs are always
the same even though they denote two different notions. The task period should denote the time intervals
that separate subsequent task invocations. The task LET denotes its logical and abstract computation
time. By distinguishing these two notions, it would be possible to shorten the response time of a task
without unnecessarily increasing the frequency of its executions. Moreover, the start time of a task could

T. Kloda, B. d’Ausbourg & L. Santinelli 3

time

LET

 release termination

input read output write

T

Figure 2: Giotto/TDL task model.

LET

T

input read output write

time

termination release
φ

Figure 3: E-TDL task model.

be moved forward allowing a later read of inputs and thus giving more freedom in the modeling of the
inter-task data flows. Therefore, we suggest to characterize an E-TDL task τi = (Φi,Ci,LETi,Ti) with
four parameters: an offset Φi, a worst case execution time Ci, a Logical Execution Time LETi and a
period Ti. An E-TDL n− th task instance (n ∈N) is invoked at time tr = Φi+nTi when its input ports are
read. It may run for at most Ci time units in the LETi interval till the time instant td = Φi + nTi +LETi

when its results are written onto its output ports. Figures 2 and 3 show the difference between the both
task models.

E-TDL Mode Switch When the system detects a condition change in its environment, it can follow
this evolution by switching from its current operating mode to a new mode. Some tasks are deleted
from the currently executed task set, others are added and still others modify their parameters or remain
unaffected. Mode switching mechanisms are a bit different in Giotto [6] and in TDL. In both cases, the
well timedness condition ensures that mode switches do not terminate logical execution of any task. In
TDL mode switches may occur only at time instants when all tasks are logically completed. In Giotto,
if a mode switch occurs when a task is logically running, then the same task must be present, with the
same timing properties, in the new mode. So, a mode switch jumps to the time point in the new mode
where the logical execution of unchanged tasks is exactly in the same state it was in the previous mode.

T2 T2

LET2 LET2 LET2

T1

LET1

Figure 4: E-TDL mode switch instants.

E-TDL follows the same mode switching rule
as in TDL: mode switches occur only when all
tasks are logically completed. Because periods
and LETs are the same in TDL, mode switches
may occur only at time instants corresponding to
hyperperiods of tasks in the current mode. The E-
TDL task model allows tasks to be logically com-
pleted before the end of their periods. This fact
may generate additional intervals where all tasks
are logically completed. Mode switches may oc-
cur during these intervals without breaking the well timedness rule. The allowable mode switch points, in
the two E-TDL tasks mode of Figure 4, are depicted by the blue intervals with inclined lines. Moreover,
by aborting execution of some group of tasks, whose outputs, in new conditions, are no longer vital for
the consistency of the system, the number of valid switching points may be increased. In [9] Martinek
et al. applied such mode switch mechanism together with a sporadic task model (τi = (Ci,LETi,Ti)) to
the Giotto. E-TDL aims to integrate the above mentioned propositions in the compositional framework,
containing multiple parallel applications, while in Giotto only one program is executed at a time.

3 Schedulability Analysis

To ensure that a system modeled with E-TDL respects all its timing constraints, processing time de-
manded by tasks should be quantified and compared to the available resources. In a first stage of our

4 Towards a More Flexible Timing Definition Language

study, we consider Earliest Deadline First (EDF) [8] scheduling algorithm. The results obtained for
TDL [3] are based on the processor utilization criterion [8] because the LET of tasks is equal to their
period. These results cannot be generalized for E-TDL. So, the processor demand criterion [2] should
be applied in this case. The processor demand criterion states that a task set is feasible if the cumulative
demand of the computation made by tasks in any interval is never larger than this interval length. Real
Time Calculus [11] proposes a method that supports any task activation pattern, not only a purely peri-
odic one with uni-modal behavior, and performs compositional analysis of the system where different
modules execute concurrently. The maximal demand that can be generated by each individual module
over any interval of given length is computed. Then, the demands from different modules are summed
up and compared to the minimal available resources for this interval length. If it occurs that the timing
definition specifies that the summed up intervals cannot be observed simultaneously, the result of the test
can be overestimated. We take this observation as the starting point of our future work. We would like
to reduce this pessimism by considering only the global schedules that are made up of task activation
patterns from the distinct modules that start at the same time instant.

References
[1] Giotto. Available at http://embedded.eecs.berkeley.edu/giotto/.
[2] Sanjoy K. Baruah, Rodney R. Howell & Louis Rosier (1990): Algorithms and Complexity Concerning the

Preemptive Scheduling of Periodic, Real-Time Tasks on One Processor. Real-Time Systems 2, pp. 301–324.
[3] Emilia Farcas (2006): Scheduling Multi-Mode Real-Time Distributed Components. Ph.D. thesis, Department

of Computer Science, University of Salzburg.
[4] Arkadeb Ghosal, Thomas A. Henzinger, Christoph M. Kirsch & Marco A. A. Sanvido (2004): Event-Driven

Programming with Logical Execution Times. In: Hybrid Systems Computation and Control, Lecture Notes
in Computer Science 2993, Springer, pp. 357–371.

[5] Arkadeb Ghosal, Alberto L. Sangiovanni-Vincentelli, Christoph M. Kirsch, Thomas A. Henzinger &
Daniel T. Iercan (2006): A Hierarchical Coordination Language for Interacting Real-Time Tasks. In: Pro-
ceedings of the 6th ACM & IEEE International conference on Embedded software (EMSOFT), pp. 132–141.

[6] Thomas A. Henzinger, Benjamin Horowitz & Christoph M. Kirsch (2000): Giotto: A Time-triggered Lan-
guage for Embedded Programming. In: Proceedings of the IEEE, Springer-Verlag, pp. 166–184.

[7] Christoph M. Kirsch & Ana Sokolova (2012): The Logical Execution Time Paradigm. In: Advances in
Real-Time Systems, pp. 103–120.

[8] C. L. Liu & James W. Layland (1973): Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment. Journal of the Association for Computing Machinery 20(1), pp. 46–61.

[9] Norbert Felix Martinek & Werner Pohlmann: Mode Switching in GIA An Ada based Real-Time Framework.
Department of Scientific Computing, University of Salzburg, Austria.

[10] Wolfgang Pree, Josef Templ, Peter Hintenaus, Andreas Naderlinger & Johannes Pletzer (2011): TDL - Steps
Beyond Giotto: A Case for Automated Software Construction. Int. J. Software and Informatics 5(1-2), pp.
335–354.

[11] Nikolay Stoimenov, Simon Perathoner & Lothar Thiele (2009): Reliable Mode Changes in Real-Time Sys-
tems with Fixed Priority or EDF Scheduling. In: Proceedings of Design, Automation and Test in Europe,
2009 (DATE 09), IEEE, Nice, France, pp. 99–104.

[12] Josef Templ (2008): Timing Definition Language (TDL) Specification 1.5. Technical Report T024, Depart-
ment of Computer Science, University of Salzburg, Austria. Available at http://www.uni-salzburg.at/
fileadmin/multimedia/SRC/docs/publications/T024.pdf.

http://embedded.eecs.berkeley.edu/giotto/
http://www.uni-salzburg.at/fileadmin/multimedia/SRC/docs/publications/T024.pdf
http://www.uni-salzburg.at/fileadmin/multimedia/SRC/docs/publications/T024.pdf

	Introduction
	An Extended Timing Definition Language
	Schedulability Analysis

